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Abstract

Under a sufficient condition to ensure a unique optimal program, the theory of turbulence in non-linear

dynamical systems allows us to exhibit an instance of (topologically) chaotic optimal behavior in a two-sector

model with irreversible investment due to Robinson–Solow–Srinivasan.
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1. Introduction

In a stimulating paper whose full implications have not yet been exhausted, Stiglitz (1968) studied the

Ramsey optimal growth problem in a model due to Solow, Srinivasan and Robinson; henceforth the RSS

model.1 In a setting with continuous time and a linear felicity function, and without any restrictions on

the discount factor2, Stiglitz appealed to Pontryagin’s maximum principle to characterize the optimal
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program as one that monotonically converges to a modified golden-rule stock. In recent work, the

authors reformulate the RSS model in discrete time, and show that his results do not universally hold in

the sense that, under specific parametric regimes, the optimal program does not satisfy the monotonicity

property, and could cycle even in the undiscounted case; see Khan and Mitra (2005, 2004a,b). In the

light of this work, a natural question arises as to whether optimal behavior in the RSS model can exhibit

topological chaos. In this letter, we answer this question in the affirmative.

We work with a special case of the RSS model in which there is only one type of machine, as opposed

to the many-machines, multi-sectoral setting considered in Stiglitz (1968) and Khan and Mitra (2005,

2004b). If the primary objective is to generate complicated dynamics from simple deterministic models,

the results reported here bring out in a dramatic way that this special case of the two-sector model, one in

which machines are not needed to produce machines, suffices for the purpose at hand. It is however of

interest that the model, characterized as it is by only three positive real numbers (a, d, q), respectively
specifying the labor–capital ratio, depreciation rate and the discount factor3, does not fall within the

canonical setting considered in the work of Mitra (1996) and Nishimura and Yano (1996) that furnishes

an bexactQ bound for the existence of period-three cycles as a universal constant 4. As such, their results

cannot be directly applied, but as in these papers, we work with the bvalue-lossQ approach of McKenzie

(2002)5, and with bsmallQ discount factors.
A final methodological observation. We present our result under a certain parametric regime,

appealing to a result in the theory of turbulence. Our application highlights the fact that we do not appeal

to any unimodal property of the optimal policy function, but only to its continuity 6. Under the restriction

that qba (a requirement that the discount factor be bsmallQ given the parameterization7 nu (1 /

a)� (1�d)N1 (so that ab1 / (2�d)), this result is a consequence of Berge’s maximum theorem.

We hope that the results and the techniques we elaborate will generate interest in the RSS model and

also be of use in further work on other models.
2. The two-sector version of the RSS model

A single consumption good is produced by infinitely divisible labor and machines with the further

Leontief specification that a unit of labor and a unit of a machine produce a unit of the consumption

good. In the investment-goods sector, only labor is required to produce machines, with aN0 units of

labor producing a single machine. Machines depreciate at the rate 0bdb1. A constant amount of labor,

normalized to unity, is available in each time period taN, where N is the set of non-negative integers.

Thus, in the canonical formulation surveyed in McKenzie (1986, 2002), the collection of production
3
As specified in the section below, this is after normalization of the other parameters of the model. Also, d and q are obviously bounded

above by one.
4
The derivation of this remarkable buniversalQ constant,

ffiffiffi
5

p
� 1

� �
=2

� �2
, uses, in particular, assumptions A1, A4 and A7 in Mitra (1996) and

assumption A2 in Nishimura and Yano (1996). These do not hold for our model and suggest an open question which we do not pursue in this

brief note.
5
This is most succinctly expressed by the statement that the planner loses by deviating from certain price-supported activities; see Section 3

below. As is well-known, the approach derives from Radner’s 1961 paper; see McKenzie (2002; p. 245).
6
The pioneering investigations of chaos in economics considered unimodal maps, as in Grandmont’s (1986) exposition; also see Block and

Coppel (1992; Preface).
7
See Khan and Mitra (2004a) for a comprehensive discussion of the importance of n for the RSS model.
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plans (x, xV), the amount xV of machines in the next period (tomorrow) from the amount x available in the

current period (today), is given by the transition possibility set: X ¼ x; xVð ÞaR
2
þ : xV� 1� dð Þxz0;

�

and a(xV� (1�d)x)V1}, where zu (xV� (1�d)x) is the number of machines that are produced, and

zz0 and azV1 respectively formalize constraints on reversibility of investment and the use of labor. For

any (x, xV)aX, one can consider the amount y of the machines available for the production of the

consumption good, leading to a correspondenceK : XYRþ with K x; xVð Þ ¼ yaRþ : 0VyVxf and

yV1�a(xV� (1�d)x)}. Welfare is derived only from the consumption good and is represented by a

linear function, normalized so that y units of the consumption good yields a welfare level y. A reduced

form utility function, u : XYRþ with u(x, xV)=max{ yaK(x, xV)} indicates the maximum welfare level

that can be obtained today, if one starts with x of machines today, and ends up with xV of machines

tomorrow, where (x, xV)aX. Intertemporal preferences are represented by the present value of the stream

of welfare levels, using a discount factor qa (0, 1).

An economy E consists of a triple (a, d, q), and the following concepts apply to it. A program from xo is

a sequence {x(t), y(t)} such that x(0)=xo, and for all taN, (x(t), x(t +1))aX and y(t)=max K((x(t), x(t +

1)). A program {x(t), y(t)} is simply a program from x(0), and associated with it is a gross investment

sequence {z(t+1)}, defined by z(t+1)=(x(t+1)� (1�d)x(t)) for all taN. It is easy to check that every

program {x(t), y(t)} is bounded by max{x(0),1 /ad}uM(x(0)), and so:
Pl

t¼0 qtu x tð Þ; x t þ 1ð Þð Þbl. A

program {x̄(t), ȳ(t)} from xo is called optimal if:
Pl

t¼0 qtu x tð Þ; x t þ 1ð Þð ÞV
Pl

t¼0 qtuðx̄ tð Þ; x̄ t þ 1ð ÞÞ for
every program {x(t), y(t)} from xo. A program {x(t), y(t)} is called stationary if for all taN, we have (x(t),

y(t))= (x(t +1), y(t+1)). A stationary optimal program is a program that is stationary and optimal.
3. On the modified golden-rule

A distinctive feature of the RSS model with discounting is that the modified golden-rule stock is

unique and is independent of the discount rate. This result is comprehensively discussed in Khan and

Mitra (2004b); we state it without proof for the simpler (one machine-type) setting to lay the groundwork

for our analysis.

Lemma 1. There is ð x̂x; p̂pÞaR
2
þ such that(x̂, x̂)aX and: u(x̂, x̂)+ (q�1)p̂x̂zu(x, xV)+ p̂(qxV�x) for

all (x, xV)aX.Further, x̂ and p̂ are uniquely given by: x̂ =1 / (1+ad), p̂ =1 / (1+qn).

Lemma 1 leads us to define the value-loss of a production plan (x, xV)aX relative to (x̂, p̂), and

rewrite it in an amenable form, through the use of the identity a(1+n)= (1 / x̂), as:

dq x; xVð Þ ¼ qp̂p=að Þ � u x; xVð Þ � p̂p qxV� xð Þ ð1Þ

If {x(t), y(t)} is a program, then (x(t), x(t+1))aX for taN, so that, denoting dq(x(t), x(t+1)) by d(t),

d tð Þ ¼ qp̂p=að Þ � u x tð Þ; x t þ 1ð Þð Þ � p̂p qx t þ 1ð Þ � x tð Þð Þ

¼ qp̂p 1� y tð Þ � az t þ 1ð Þð Þ þ lp̂p x tð Þ � y tð Þð Þ; ð2Þ

where lu (1�q(1�d)). The aggregate value-loss of a program {x(t), y(t)} is given by:

Xl

t¼0

qtd tð Þ ¼ p̂p q=a 1� qð Þð Þ þ x 0ð Þ½ 	 �
Xl

t¼0

qtu x tð Þ; x t þ 1ð Þð Þ: ð3Þ
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It is clear from Eq. (3) that the optimality criterion reduces to one based on minimizing aggregate value-

losses, since:

Xl

t¼0

qt u xV tð Þ; xV t þ 1ð Þð Þ � u xW tð Þ; xW t þ 1ð Þð Þ½ 	 ¼
Xl

t¼0

qt dV tð Þ � dW tð Þ½ 	 ð4Þ

where {xV(t), yV(t)} and {xW(t), yW(t)} are two programs from the same initial stock.
4. A continuous optimal policy function

It is standard to verify that there exists an optimal program {x̄(t), ȳ(t)} from any initial stock xaRþ.
We define: V xð Þ ¼

Pl
t¼0 qtu x̄ðtð Þ; x̄ t þ 1ð ÞÞ, and refer to V as the value function. It is easy to check that

V is concave and non-decreasing on Rþ.
An elementary fact of the RSS model is that an optimal program {x̄(t), ȳ(t)} from x satisfies the

full employment property: ȳ(t)=1�a[x̄(t+1)� (1�d)x̄(t)] for all taN (see Khan and Mitra (2004b)).

We use this to present a sufficient condition for the uniqueness of optimal programs. Our sufficient

condition involves a restriction on the discount factor. The standard argument for uniqueness of

optimal programs, relying on the strict concavity of the reduced-form utility function is not applicable

in the RSS model.

Proposition 1. For any economy E, there is a unique optimal program from every initial stock if qba.

Proof. If not, there exist two optimal programs {x(t), y(t)} and {xV(t), yV(t)} from some initial stock x,

and for which, without any loss of generality, we may suppose that x(1)NxV(1). If y(1)=0, given the full

employment property of optimal programs, it can be checked that the program {x(t), y(t)} is dominated

by a program that is identical to {xV(t), yV(t)} except for the terms (x, y(0)) and (x(1),

(1�a(xV(2)� (1�d)x(1)). Thus, it remains only to consider the case where y(1)N0. Given convexity

of X and concavity of u, we may also suppose that the programs are such that x(1) is bclose enoughQ to
xV(1) so that mu (x(1)�xV(1))by(1).

Now consider a sequence that is identical to {x(t), y(t)} except that its second term is given by {xV(1),
y(1)�m}. It can be checked that this sequence is a program from x. Since the optimal program from

xV(1) will do at least as well as the program (xV(1), x(2), x(3),. . .), we obtain V(x(1))�V(xV(1))Vm.

Since {x(t), y(t)} and {xV(t), yV(t)} are both optimal from x, we have V(x) = y(0) +qV
(x(1))=yV(0)+qV(xV(1)), which yields qV(x(1))�qV(xV(1))=yV(0)�y(0)=am, given the full employ-

ment property of optimal programs. Using the previous upper bound of qm on this expression, we obtain

qza, and hence contradict our sufficient condition to complete the proof. 5

Corollary 1. If q ba, the optimal correspondence for the economy E is a continuous policy function h

on the state space X= [0, 1/ad].

Proof. The optimal policy correspondence is actually a function in view of Proposition 1. The fact that it

is continuous is a consequence of Berge’s maximum theorem; see for example Dutta and Mitra

(1989). 5

Corollary 2. If qba and {xV(t), yV(t)} is an optimal program from 1, then for every program {x(t), y(t)}

with first two terms {(1, 1), (1�d, 1�d)}, we must have x(2)VxV(2).
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Proof. Suppose there exists a program {x(t), y(t)} with first two terms {(1, 1), (1�d, 1�d)}, and

x(2)NxV(2). Denote u(x(0), x(1))+qu(x(1), x(2)) by U and u(xV(0), xV(1))+qu(xV(1), xV(2)) by UV. Then
U = y(0)+qy(1)=1+q(1�d). Furthermore, zV(1)= xV(1)+ (1�d)z0, yV(0)V1�azV(1) and yV(1)V
xV(1)= zV(1)� (1�d). Thus, under the hypothesis qba, we have UVV1+q(1�d)+ zV(1)(q�a)VU.

From the principle of optimality, we obtain U+q2V(x(2))VUV+q2V(xV(2)). With equality, we

obtain two distinct optimal programs from x=x(0)=xV(0)=1, and contradict Proposition 1. With

strict inequality, using the facts that x(2)NxV(2), and V is non-decreasing, we obtain UbUV, a

contradiction. 5
5. Optimal topological chaos

In this section, we will be concerned with the dynamical system (X, h), where X and h are as specified

in Corollary 1. The dynamical system (X, h) exhibits topological chaos if its topological entropy is

positive 8. It is known that if h (or an iterate of it) is turbulent, then (X, h) exhibits topological chaos.

Since checking for turbulence is relatively easy, it is an especially useful sufficient condition for a

dynamical system to exhibit topological chaos 9. For our dynamical system, we show how this condition

can be checked.

We assume a parametric regime in which a and d satisfy the restriction:

1= 1þ adð Þ½ 	 � d 1� dð Þ=a½ 	 ¼ 1� dð Þ3 ð5Þ
Note that given any d a (0, 1), [1 / (1+ad)]z [1 / (1+d)]N (1�d), which implies that as aY1, the

left-hand side of Eq. (5) converges to a number greater than (1�d)2, while it converges to �l as

aY0. Thus, by the intermediate value theorem, there is aa (0, 1) for which Eq. (5) holds, given any

da (0, 1).

We can now present the argument in two steps: first, we identify an optimal program under the

parametric restriction Eq. (5); and second, we show that the dynamical system (X, h2) is turbulent.

Proposition 2. If qba, and the parametric restriction Eq. (5) holds, the sequence {x(t), y(t)}u {(1, 1),

(1�d, 1�d), (x̂ / (1�d), 1), (x̂, x̂), (x̂, x̂), : : :}is an optimal program from Proposition 1.

Proof. It can be checked that {x(t), y(t)} is a program from Proposition 1; the only non-trivial step in this

verification is to note that x(2)= (1 /a)�n(1�d)= x̂ / (1�d), by using Eq. (5). Suppose {x(t), y(t)} is not

optimal from Proposition 1. Denoting by {xV(t), yV(t)} the optimal program from Proposition 1, and

using Proposition 1, we have:

Xl

t¼0

qtu x tð Þ; x t þ 1ð Þð Þb
Xl

t¼0

qtu xV tð Þ; xV t þ 1ð Þð Þ ð6Þ

Note that d(t)=0 for all t p 2. Substituting these values in Eqs. (2) and (3), and denoting p̂[(q /a(1�q))+
x(0)] by a, we obtain:

Pl
t¼0 qtu x tð Þ; x t þ 1ð Þð Þ ¼ a � q2d 2ð Þ ¼ a � q2lp̂p x 2ð Þ � 1½ 	. Since yV(2)V1, a
8
An alternative definition is that h has a periodic point of period that is not a power of 2. However, by a theorem due to Misiurewicz, these

two definitions are equivalent. See Block and Coppel (1992, Proposition 34, p. 218) for an exposition of this result, as well as for a

comprehensive discussion of the relevant concepts and definitions.
9
This point has already been emphasized in Mitra (2001).
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second appeal to Eqs. (2) and (3) yields:
Pl

t¼0 qtu xV tð Þ; xV t þ 1ð Þð ÞVa � q2dV 2ð ÞVa � q2lp̂p xV 2ð Þ � 1½ 	.
On making the necessary substitutions in Eq. (6), we obtain x(2)NxV(2), and thereby contradict Corollary
2. This contradiction completes the proof. 5

We can now present our principal result on topological chaos in the RSS model.10

Theorem 1. Under the hypotheses of Proposition 2, the dynamical system (X, h) exhibits topological

chaos.

Proof. Given the optimal policy function h from Corollary 1, let f(x)=h(h(x))uh2(x) for all x in X.

Then, f is continuous on X. Consider the following three values of x :A= x̂=x(4), B= x̂ / (1�d)=x(2) and

C =1= x(0), and note that (i) f(B) =h(h(B)) =h(x̂) = x̂ =A; (ii) f(A) =h(h(A)) =h(x̂) = x̂ =A; (iii)

f(C)=h(h(C))=h(x(1))=h(1�d)= x̂ / (1�d)=B; (iv) A= x̂ b1=C(x̂ / (1�d)=B. In the form of a

summary, we have:

f Bð Þ ¼ f Að Þ ¼ A; f Cð Þ ¼ B; AbCbB

We can now assert that the function f is turbulent (Definition, p. 25), and therefore the topological

entropy of f, w ( f) z ln 2 (Corollary 15, p. 200). This in turn implies that the topological entropy of h, w
(h) = (1/2)w( f)z ln

ffiffiffi
2

p
N0, (Proposition 2, p. 191), so that (X , h) exhibits topological

chaos. 5
6. Concluding remarks

The point of this letter is not simply to provide yet another instance of topological chaos in an optimal

growth model, but to do so in a simple setting where there is a widely-held presumption of monotonic

convergence of optimal programs, having been established by Stiglitz in a continuous-time framework

more than thirty six years ago. This being said, a precise delineation of the optimal policy

correspondence of the RSS model for all values of the discount factor, and in particular to find values

for which it is a unimodal function, remains an important open question stemming from the analysis

presented here. Thus, the fact that the proof of Theorem 1 above does not appeal to the unimodal

property, but only to that of continuity under the restriction of bsmallQ discount factors, is surely of

methodological import.
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All page numbers in the proof to follow refer to the book by Block and Coppel (1992).
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